5.1

5.0 TRANSECT METHODS
5.1 Introduction

One of themain handicaps faced by thepracticing population ecologist
is that there really is nowholly reliable census method for most wild animal
populations. In spite of the intensive theoretical work done on capture-
recapture methods, there yet remain various unresolved issues. Hence, as
frequently remarked here, it is essential tase more han one method,and to
do as much cross-checking and testing of assumptions agossible. Itis, of
course, easy torecommend such a course,but very difficult to follow it. For
census methodsthe only suretest of the underlying assumptions may ifact
be to secure an absote population count. Even hen we are left with the
guestion ofsampling errors--an observed discrepancy maysimply be due to
chance alone.

Since the capture-recapture methods require at least one outright
capture of asample ofanimals, followed by one or morerepeat observations
(which may be visual only), they areecessarily expensive touse in practice.
Catch- effort and change-in-ratio methods can only beused effectively on a
harvested population. These limitations lead to aneed for amethod based
solely on visual observatiosince it is often relatively inexpensive andrarely
poses any threat to thpopulation. For these reasons, and no doubtbecause of
wider recognition ofthe difficulties with other methods,there has recently
been a considerable interest in transect methods.

One of thebrighter pospects forthe future of transect methods isthat
it may be possible toavoid the ifall posed by the "equal probability of
selection” assumption required toapply elementary probability models.
Unfortunately, some of the early work on transect methods included an
equally untenable assumption, that individual animals are randomly and
independently distributed over the study area. prefer toadopt the working
axiom that this is never the case, even when tests for departure fremisaon
distribution are "not significant." | will cheerfully abadon that viewpoint
whenever the power of a test of randomness can be shown tsuibably large.
Presently, arandom distribution of individuals may have to be assumed for
various features of secondaryimportance, such asobtaining anapproximate
notion (really alower Ilimit) of a variance for an estimate. However,
bootstrapping offers promise for better variance estimates, with less
difficulty.

Avoiding the assumption ofa random sptial pattern ofindividuals
requires that we substitute random bkation of transect lies. Systematically
spaced lines arenuch easier taise andhave other practical advantages. Not
the least ofthese is thefact that randomly located lines ray fall very close
together sothat running one such line caninfluence animals on anearby
line. Some waysto avoid this problem are discussedbelow. Although we will
not try to govery deeply into the issuehere, itshould beremarked that the
choice between random and systematic sampling for transect methodst &s
simple a matter as for, say, plesampling. For plot sampling, two features are
of paramount importance. One is to avoid a systematic pattern that is
correlated \ith a similar pattern inthe material being sapled. The other is
that variances obtained fronsystematic samples usuallpverestimate the true
variance.
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Some of the transect estimators depend on a probability model htbéds
strictly true if and only if thetransect lines are indeedrandomly located. This
may place a considerable premium @dhering torandom sampling. Possibly
the effect of departing from that model may eventually turn out to beniafor
importance. Until more work has been done of the "robustness"” of the
estimators, wewill adhere tothe requirement ofrandom sampling, when this
is at all feasible. If very large areasare to be covered, it maynot be
practicable touse anything but a systematic amngement oftransect lines.
However, the most apprent problems \ith systematic samples apply to
situations of a much smaller scale, not when lines are very widely spaced.

5.2 A classification of transect methods

Terminology for transect methods isnot well-established. Wewill
adhere to ausage thatincludes three main classes. The strip-transect is
essentially a long narrowplot, on which it is basically assumed thatall of the
individuals present can be seen andallied. As such,there is noimportant
difference from plot sampling. Some modificationstend to make it more
interesting and worth special attention. These include censusing mrine
mammals atsea, when individuals may submerge for varying periods of time,
and thus escapeenumeration. Inmany transect applicationsthe mobility of
individual animals is neglected. This is not feasible for those species that are
observed when inmotion, such assmall birds. Thus another kind of
modification needs to be considered.

In most census methodsindividual objects are regarded aspoints
scattered around the map. Sometimes talsstraction either isnot practicable
or is inefficient. The investigator may bedirectly concerned with such
guantities as the canopy coverage of shrubs or the voluméogd left lying in
a cutover area. There is then an advantage in measuringsitieeof the object
intercepted by the line; hence the descriptive term of line-intercept method.

The third class is perhaps bestknown, and includesthe methods in
which decreasing visibility of objects wth distance away from the transect
line has to be aken into account. We includeall such methodsunder the
general heading of line-transects. Some writerse the samderm to apply to
both strip- transects and line-intercepts. The terminology adopted here has
the advantage of being reasonably explicit in descriptive terms.

Where mobile animals are concerned, onemportant distinction lies in
whether or not the animalesponds conspicuouslyo the observer's approach.
One can hen measurethe flushing- distance, i.e., the straigh-line distance
between observer and animal the time theanimal "jumps" or "flushes," i.e.,
leaves cover. This is alsdesignated inthe literature asthe radial distance or
as the sighting distance. It isessential, however, toalso measure the angle or
the right-angle distance (i.e., the distance between the track line and the
animal.

When detectiondepends mainly on the observer locating the animal or
other object without the help of a flushing-response, there is reasohetoeve
(cf. Robinette et al., 1974) that thBushing-distance models may not hold, and
may leadto biased estimates. Aslternate approach imuch cases is based on
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use of right-angle distances. It is tha useful to consider adichotomous
approach (Fig. 5.1) tothe several classes ofmethods. It should helpreaders
keep the various circumstances and conditideading to theseveral classes of
methods in mind. Aecent development inwhich the observer remains at a
point and estimates distances tsurrounding objectshas been known as the
variable circular plot, and islargely treated by methodsused for right-angle
transects.
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Fig. 5.1. A classification of transect methods.
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5.3 The line-intercept method

The line-intercept technique has been used by plant ecolpists for
many years as a means of estimating "canopy-coverage." |Initlsdance, the
basis issimple and direct. All that isnecessary igo measure the fraction of
the total length of a given transect line that actually intercepts shrub
canopies. The armangement can be depicted as ifig 5.2, which represents a
rectangular study areéhaving dimensions Wand L, with asingle transect (of
length, L) intercepting two shrubsfor one ofwhich the appropriate canopy-
coverage measurement () is indicated. The technique can also be used for

tree canopies by sighting upwards to find the margins of the canopy.
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FIG. 5.2 Dimensions used in the line-intercept method. The shaded areas
represent shrub canopies.

An unbiased estimate of canopyoverage is justthe sum of the jl
observed onall of the transect lines divided by the total length of transects
used. Unless there issome sort ofregular pattern inthe armangement of the
shrubs, very likely a systematic spacing oflines should not causetrouble in
this situation. Werepeat, however, that the basis of theesults given in this
chapter lies in randomized location of transect lines.
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Two minor points may cause some trouble in actpaactice. One isthat
the boundaries ofthe study area mayintersect some shrubs. Auseful rule,
that should be decided on before the area is laid out, ind¢tude such plants if
they occur on, say,the northern andeastern boundary and exclug@ them on
the other twoboundaries. The second comon problem isthat many useful
natural study areas (e.g., habitat types) are very irregular in shape. Aneasy
way to deal ith this kind of situation is to proceed as ifrig. 5.3. All that is
needed is daseline Wthat runs the fulllength of the area, and tatilize
transects of variable length (L with this length measuredonly within the

study area. The calculations are illustrated in Example 5.1.

Fig. 5.3. Line-intercepts on an irregularly shaped area.

Estimates of the numbers or density (number per unit area) of
individual plants have usually not been nade by the plant ecolégfs in their
use of the method. However, there is asimple way to obtain an unbiased
estimate of density,although it "costs" an additional measurement. /Aiased
estimate can be obtainewithout an extra measurement, and will be described
first. Mclntyre (1953) investigated the useof the measurement jlfor density
estimation, and proposed severalpossible procedures. In usingthe length of
the transect interception (J), he considered that the shrubs could be
represented by population ofcircles of varying diameter. Given random
interceptions, it islen easy toderive atheoretical expession for length of
intercepts which leads to the equation for density:

dzﬁf% (5.1)

in which n stands for the number of transectsof length Land m for the
number of shrubs actuallyintercepted (foreach ofwhich Ij is measured). As
already noted, thetransects dmot have to be of the saméength. The only
change is to replace nL b¥ Ljin the denominator above.
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Same trials with an artificial population led Mcintyre (1953) tosuggest
that his method might @l be useful for objects other than circles. Very
likely the best results will beobtained for objecs with smooth boundaries and
few indentations or "scalloped" edges. This is because Eq. (5.1) ressEprocals
of the | so that a few very short easurements will have adisproportionately
large effect onthe estimate. Toavoid this problem, Mcintyre recommended
using the longest chord parallel tothe transect line (and another equation).
However, some better procedures are given below. Eq.(5.1) should mainly be
used for anapproximate notion of density whencanopy coverage isthe main
purpose of the survey and an extra measurement is not justified.

An interesting alternative toMclintyre's approach can be described as
"needle sampling” (DeVries 1974). It was originally developed for
inventorying logs lying onthe ground in cut-over aas. Instead of acircle,
the object now is defined as a "needle" (which canirscribed in avariety of
only roughly elongate objects) and the famous results of "Buffon's nedle
problem” wused toobtain a density estimate.The chief drawback isthat the
needles need to beoriented randomly, an assumption that may well be
guestioned in practice. More details appear in Example 5.2.

Exampl e 5.1 Censusing prairie-dog dens

Line-intercepts were used to estimate the nunber of dens in a
prairie- dog (Cynonys |udovicianus) colony by Eberhardt (1978b). The
colony was elliptical in shape, with a | ong di nension of about 700 m and
a maxi mum wi dth of about 500 m A systematic sanple was used, with 9
transects spaced 66 m apart, and running across the narrower dinmension
of the area. The earth nmounds at each den served in the same manner as
shrub canopies in the usual application of the line-intercept nethod.

For each nound intercepted by the transect |ine, neasurenents of the
length of the interception (Ij) and the mound width (w), as shown in
Figure 5.2. It should be noted that wf is taken so as to neasure the
probability of interception for the nound, i.e., it is the distance

bet ween transects that just touch the right- and left-hand extrenities
of the nound.

The individual observations appear in Table 5.1, which also
i ncludes the distance between nound centers, or, at the ends of
transects, the distance to the edge of the area grazed by the prairie
dogs. This was regarded as the boundary of the study area.
Calculations of density are thus for the grazed area immediately
surroundi ng the mounds. Cal cul ations on the basic data are summuarized
in Table 5.2. Proportion of the area covered by nounds is easily
estimated, being just the total length of intercepts divided by the
total length of transect lines. Thus for the first transect, it is:

ip= 6.12/228.69= 0.027.

For the entire area, the proportion covered is just the sum of all
i ntercepts divided by the sumof transect |engths:

A ZTj

F':Z_Li = 115.36/3578.9= 0.0322.

This is a ratio estimate, for which a variance estinmate is given in
Chapter 4. Here Tj represents the total length of intercepts on the ith

transect, i.e., T1 = 6.12 m The numerator could just as well be
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witten ZjZ |jj, where j denotes observations on a transect and i

denotes the transect, but using the transect totals nmakes it easy to see
that this expression has the same form as the ratio estimators of
Chapter 4.

The finite population correction is neglected here since a small
fraction of the popul ati on of nounds was actually tallied. Letting y =
total interceptions (Tj) and x = transect length (Lj), the calcul ations

are:

A 1 1
[CV(P)]2 == [oyy + Oxx - 20yx] = g [ 0.1426 + 0.1507 -2(0.1176)] = 0.00644

N

The estimated standard error for p is then just (0.00644) 1/2 (0.0322)
= 0.0032. The coefficients of variation are appreciably larger than
recommended (in Chapter 4) for use of the ratio nethod. W thus propose
that a sinple approach night be used here, i.e., conpute a variance
directly fromthe proportions covered of the individual transects. This
gives p = 0.0329 (averaging the transect values), with a standard error
of 0.0028, so there is little difference fromthe ratio estimate.

Since widths (wj) of the nounds were tallied, MlIntyre's nethod

for estimating density, Eq. (5.1), should not be used here. Apart from
the factor of 2/min the equation, calculations would proceed in exactly
the sane way as those utilizing widths, given next.

Al though | recommend random sanpling because nobst of the
estimation procedures in transect work are based on random transect
| ocations, the present exanple is one in which a systematic sanple was
t aken. This was done minly to study the pattern of spatial
di stribution of dens. Wth a systematic |ayout and distances between
dens (Table 5.1), one can study the spatial arrangenent of the dens.
This is much harder to do with random transect |ocations, since random
sanmpl es, especially relatively small ones, frequently |eave sizeable
gaps in spatial coverage.

In the present exanple, we can proceed in essentially the sane
manner for either random or systematic transect |ocations. The
rationale differs sonewhat, and needs to be nentioned for each case. It
may be noted, too, that neither Eq. (5.2) or (5.3) is usable here since
the transect lines are of variable length and the total area is not
known. Wen the transects are randomy |ocated, each individual
transect yields an independent estimate of density, which can be
calculated fromEq. (5.2), with n = 1. Using data from transect No. 1
(Table 5.1), we get (calculations in neters):

1 1 1 1
2287[381 3.12 10.86 10.81 112

] = 0.0169 dens/rh

The sane procedure can be used for each of the other transects,
and the remaining question is one of how to conbine 9 independent
estimates (assuming, for illustration, that the transects had been
randomy located along a baseline, as in Fig. 5.3). Aver agi ng, and
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conputing a variance from the individual transect values, is both
straightforward and | egitinmate.

The above procedure is often not very efficient, since it does not
take into account the variation in transect lengths. A logical way to
do this is just to weight the individual density estimtes by the
transect lengths, i.e., to calcul ate:

n
N N n
Bverall= LiDi /% Lj
i=1 i=1
which is a ratio estimate just as in Chapter 4.
For a systematic sanple, a somewhat different rationale mght be

used. This is because the wuniform spacing of the transects pernts
viewing the area as being broken down into a nunber of strips of equal

wi dt h. We then calculate an estimate of the number of dens in each
strip, sum these, and divide by the total area (obtained by sunm ng up
the area of the individual strips). The procedure turns out to give

exactly the same result as above, since a constant strip width is
i ntroduced in both nunerator and denom nator, and thus cancels out.

Using the data of Table 5.2 gives the follow ng density estinate.

" dVerall = 70.013/3578.9= 0.0196

The coefficient of variation is again estimated as in Chapter 4, wthout
the finite popul ation correction (for the reasons discussed above):

[CV( p)12 :nl [oyy + oxx - 20yx] = 1/9[0.1698+0.1507-2(-.042)]=0.0042

The standard error of the estimate is (0.0449) 1/2 (0.0196) =
0.0042. These results are very simlar to those for intercept |ength.
The above exanpl e might be converted into a prairie-dog census nmethod if
the nunber of prairie-dogs inhabiting a representative sanple of dens
could be estimated.

Table 5.1. Spacing (dj), intercept lengths (lIj) and nmound widths (w)
for 9 line-intercepts in a prairie-dog "town". Transect no. 1 was the
west ernmost transect. Spacing (dj) in neters, other neasurenents in cm
The first di is distance to first mound from nargin of the area and the
last di is distance from last nmound to the other nmargin of the study
ar ea.

#1 #2 #3

di Wi li di wi i di Wi li
2.84 381 127 16.06 130 74 138.0 124 107
46.3 312 114 6.62 290 236 39.69 117 104
39.69 86 152 27.4 132 96 67.1 218 124
5.67 81 84 6.62 109 74 9.45 168 58
20.79 112 135 35.91 401 224 1.89 160 74
113.4 612 124.74 282 160 34.02 368 157
228.69 41.58 274 213 27.4 198 38
28.35 1077 9.45 662

287.28 326.97



#4
di Wi
189.00 112
4.72 274
66.15 89
29.30 256
22.68 79
10.40 376
15.12 406
9.45 340
34.02 249
69.93 96
8.50 389
25.52 46
5.67 89
75.60
566.06
#7
di Wi
12.28 292
10.40 132
7.56 117
49.14 142
33.08 239
37.80 91
6.62 127
32.13 91
51.98 221
17.96 196
29.30 117
108.68 292
274.00 287
14.18 140
18.90
704.01

74.
170.
66.
185.
41.
208.
109.
203.
310.
81.
338.
46.

00
00
00
00
00
00
00
00
00
00
00
00

81.
1912.0

00

158

79
41

135
198

91

183

46

142
140

66

163
274
104
1820

di

68.
24.

#5

98
57

37.8

34.
23.
17.
.67
31.
20.
.56
20.
12.
72.
15.

02
62
01

18
79

79
28
76
12

22.

414.

di

28.
83.
77.
10.
11.
89.
43.

7.

2.
11.

68
83

#8

35
16
49
40
34
78
47
56
84
34

9.45

375.

18

Wi

76
350
127
196
140

61
117

86
175
229
163
274
201
198

Wi
109
163

84
142
330
249
325
198

74
147

58
244
74
76
107
58
112
89
168
203
163
193
160
109
1814

99
163
51
99
91
135
183
122
79
132
1154

#6
di wi
5.67 94
11.34 175
2.84 71
27.40 102
65.20 183
60.48 158
20.79 74
12.28 117
17.96 91
26.46 216
9.45 175
10.40 114
128.52 163
3.78 56
20.79
423.36
#9
di wi
19.84 183
26.46 102
7.56 84
15.12 300
5.67 277
46.3 112
39.69 56
40.64 66
11.34 86
1.89 244
37.8
252.31

59

81
170
84
79
74
132
48
112
48
119
122
81
53
112
1315

137
104
137
114
127
84
51
84
147
185
1170
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Table 5.2. Sumary of line intercept data for a prairie-dog "town"

Transect Length of Proportion of Number of Sum of Density
number of transect area covered mods intercepts estimates
Li by mounds irgrcepted Ti Di
1 228.7 0.027 5 6.12 0.0169
2 287.3 0.037 7 10.77 0.0131
3 327.0 0.020 7 6.62 0.0126
4 566.1 0.034 13 19.12 0.0174
5 414.8 0.044 14 18.14 0.0247
6 423.4 0.031 14 13.15 0.0303
7 704.1 0.026 14 18.20 0.0132
8 375.2 0.031 10 11.54 0.0186
9 252.3 0.046 10 11.70 0.0364
3578.9 94 115.36

Exampl e 5.2 "Needl e" sanpling

As with nost similar sanpling problens, this one is nost readily
conceptual i zed in reverse of what happens in practice. That is, we |ay
out the sanpling schenme and then introduce, at random the objects to be
sanpled. Here we suppose a systematic sanpling pattern of parallel
transect is laid out, and long, narrow objects of length |Ij ("needles")
are randomy distributed over the area. Let the spacing between the
objects be W and assune for sinplicity, that |j <W i.e., that none of
the "needles" is longer than the interval between transects. The
rel evant measurenments appear in the figure below. A "needle" of length
i is thrown randomy onto a field of parallel transect. The probability
that it intercepts a transect depends on w, which in turn depends on

the angle (6) that the needl e happens to assune.

V \TRANSECTS
i / ] w /

Di nensi ons used in "needl e" sanpling.

W can wite the probability of interception for a needle of given
length (Ij) as:

| _ wij lj cos®
P = Pr{interception} W W
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Since the angle (6) is assumed to be randomy determined, it has a

uni form di stribution between 0 and 900, or between 0 and 12 in radians.
Hence the frequency distribution of 0 is:

2
ej(= 9 (03]
The expected value of p is then:
2l nfz q _2Ii
E(P)—T[W Ocose e_n\N

If n needles are observed to intercept the transects, a sinple estinate
of the total nunber (N) of needles in the sanmpled population is:

nmw 11

2 'Z [
i=1

and the estinated density of needles is:
n

o= M <1

L&

The main problemwith the nethod is that it is seldomsafe to assune
that the needles are randomy distributed. W thus reconmend measuri ng
wj directly, and utilizing the equations given in the text for density
estimation based on wj. Students who want a denonstration of the nethod
can readily construct one with a handful of kitchen matches scattered on
a hardwood or tiled floor.

N
N= nfp =

5.4 Length-biased sampling

The main issue in estimating shrub density from canopy measurement
is one that is ommon to avery much wider class ofsampling problems. Cox
(1962, 1969)has used thehighly descriptive érm "length-biased sampling" to
characterize procedures inwhich the probability of sampling aparticular
element inthe population isproportional tosome dimension ofthat element.
Such a sample idy no means representative othe population, being very
much biased towards individuals having the great&ngths." Inthe present
case, it is readily evident (Fig. 5.2) that thprobability that agiven shrub will
be included in a sample taken by thetercept method depends on hoWwide"
it is with respect tothe baseline (W) ofthe study area. The relevant
measurement orthe shrub is thus w(Fig. 5.2). It should be noted that wi is

the distance between tangent lingsawn parallelto the transect atthe right-
and left-hand extremities of the canopy.

The probability that agiven shrub will be intercepted bythe transect
line is just w/W, on either Fig. 5.2 or 5.3. By measuring &ccurately, one can
thus determine the exact probability that agiven shrub intercepted by the
transect wuld be observed, beforethe transect line was selected. Given the
probability of interception for each element observed inthe sample, a
straightforward argument can be constructed toderive a density estimate
(Eberhardt 1978b). The principal equation is:

1 &1
1=1 "7
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As in Eqg. 5.1, m isthe number of objects interceptedand measured) on
n transect lines randomly placed in a rectangular area of dimensions W and L.

When the study area is not rectangular, a baseline W camoletructed
as indicated in connection with Fig. 5.3, and density estimated from:

g-Wel

5.3
nA =1 \NI ( )

where A represents the area of the study plot expressed in the same units
(e.g., square meters) as the linear measurementsarfd W). A useful

approach when the area is not known is given in Example 5.1, which also
illustrates variance calculations. Estimates of N, the total population are, of
course, readily obtained from Egs. 5.1 to 5.3 by multiplying by the area.

Lucas and Seber (1977) have derived equations comparable tothose
above, butuse adifferent transectlayout. They require that the transects be
of short length, and both randomly located and randomly oriented with
respect tothe baseline. They obtain theoretical variance formulasfor some
circumstances. However, in the present state of theoretical and practical
knowledge, itseems advisable touse variances estimated from replicated or
interpenetrating sampling, as in &ction 5.12 (below), or bythe ratio method
of Example 5.1.

The above method can be extended to deal with objetker than shrub
canopies, and toaggregations ofanimals or patchesof vegetation, sodong as
the identity and boundaries of each such "object® can be uniquely defined. It is
also possible tosubstantially elarge the area forinterception of agiven
object. A method for doing this iswell-known to foresters asBitterlich's
method. An"angle-gauge" isused todetermine whether omot the apparent
diameter of a treeis greater han afixed angle, and thus whether ornot the
tree should be included in a sample. Readers fantiliar with the method can
simulate the field operation by extending an arnwith the thumb in an
upright position. If portions of anobject (tree, rock, sign,etc.) protrude on
both sides of one'shumb, then that object is"in" the sample. If theobserver
now moves away fromthe object until itsmargins just barely protrude beyond
the sides of the "gauge" (thumb), then that position delineatesbthendary of
the interception area (Fig. 4. Circular objects like treeswill have acircular
boundary, but irregular objects will have an asymmetric boundary.
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ANGLE GAUGE

Fig. 5.4. Use of an"angle-gauge". Objects are "in" the sample when, as in(a),
the sidesprotrude beyond the gauge. Whenthe gauge blocksthe object from
view, as in (b), then it is not included in the sample.

Although Bitterlich's method isnormally used only at fixed sampling
points, it can be utilized as a transect method, as was proposed by %ira&8).
However, this will usually only be practicabléor relatively rare objects, since
"intersection” has to bedetermined byuse of anangle- gauge aseach object
comes into a right-anglegposition onthe transect line. The method might thus
be most useful for something like a survey of den-trees in wildlife
management.

Density may not be the main objective in some studies. When the
volume, weight, orsome other measurement is to bestimated, a simpleratio
method can be used, and illustrated in Example 5.3.
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Exanpl e 5.3 Auxiliary neasurenents

Oten the primary objective of a study will be to estinate sone
attribute other than density, or in addition to density. Thus foresters
are usually also concerned with basal area and volume of tinber, while
ecol ogists often want to estinmate the biomass (total Weight) of

veget ation. Met hods for securing such estimates by ratio estinmation
were given in Chapter 4. A related nethod based on line-intercepts can
readily be derived. Let Xj be the "auxiliary" neasurenment, such as

wei ght or volunme of the ith obj ect intercepted. A well-known way to
estimate the average value of a sanple of such objects is sinply to
"wei ght" each object inversely as the probability that it is included in
the sanple. Since this probability is proportional to w, we get the

_ 10
mlzlvvi
sinple result:

If the above estinmate is regarded as the estinmated average on the

jth transect, then variable transect | engths can be adjusted for just as
was done in Exanple 5.1, i.e.,:

and the sane approach can be taken to obtaining a variance estimate
(ratio nethod).

5.5 Flushing-distance line transects

In the line-transect method, the objects being censusedare considered
to be dimensionless points, and the probability of detection isassumed to be
measured by use of distances between observer and object. t8ogponometry
is involved, based on the distances and angle illustratedrign 5.5. Just which
measurements are taken will depend considerably onthe particular field
situation. The essential reasurements for most puposes are r, the sighting-
distance (also called radial distance or flushinglistance), and x, the right-
angle distance. From simple trigonometry, any pair of the possible
measurements can be used ¢alculate the ohers. However,precautions need
to be taken to avoid measurement errors. | strongdgommend against visual
estimation of either distances or the included ang. (
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Fig. 5.5. Relevant measurements for the line-transect method. The vertical
arrow shows the observer's path along a transect line.

In the flushing-distance model, the distance (r) between observer and
animal atthe time theanimal flushes isthe essential measurement. Since a
test of the vality of the model is based om/r (which isthe sine of@), these
distances need to be measured as accurately as possible. When theangfte
distance method (described below) is used, only the distance x isutilized. A
model for evaluatingrelative errors in raasurements islescribed inExample
5.4.

Two basic flushing-distance line transect models have been proposed
(Eberhardt 1968b). In one model it imssumed thatthe flushing-distance is
fixed, i.e., that the individual animal flushes asoon as theobserver crosses
the boundary of a circlewith radius equal to thisfixed distance. This model is
due to Hayne (1949), who noted that the fixed distance doesnot need to be
assumed to be germanent characteristic ofthe individual anmal. The
necessary assymiion is that each animal on acensus area has a fixed
flushing- distance during the ntie when agiven randomly located transect is
run. In many circumstances iseems quitelikely that the flushing-distance
will depend very much omharacteristics othe particular location inwhich
an animal is resting.

The fixed-distance model permits a simple and direct analysis,
proceeding inthe samemanner asfor the line intercept method. The shrub
canopy is now replaced by circle of radius r,and it is assumed that the
flushing distance (r) is measured accurately foreach animal seen. It isalso
assumed thatanimals flush mdependently, i.e., that statling one animal does
not change the behavior of thethers. Analysisof the fixed flushing-distance
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model ten requires only noting that wj =2rj that is, wj is the diameter of a
circle of radius f In analogy with Eq. (5.2), we now have:

_ 121

=_— 5.4
2nL &, (5-4)

with n the number of transects and m the number of observations as before.
Irregular-shaped census areas can also be dealt with in the same manner as
with line intercepts.

In some casesgroups of animals may flushtogether, aswith broods of
grouse, orflocks of small birds. If it can beshown, from field data, that
flushing radius and goup size are independent, it may beossible touse Egq.
(5.4) to estimate the density of groups and multiply that estimate by aerage
group size. |If goup size and flushing radius are correlated, one can still
estimate the number of goups, but the average ofgroup sizes is abiased
estimator of the population mean.

As Hayne (1949) indicated, the expected flushing angle is 32.2. A
variety of field studieshave yielded averageangles tlat are close tothis value
for animals that "flush." Robinette etal. (1974), working mostly with animals
that do not flsh and inanimate objects, obtained wider mean angles. The
underlying theory (cf. Eberhardt 1978b) shows that the frequency
distribution of the ratio (x/r) of right-angle distances (x) toflushing-
distances (r) should be that of theuniform distribution. Hence a simplechi-
square test (Example 5.5) can be usedcheck onthe valdity of the model. |If
the test shows significant deviations from the hypothesis of auniform
distribution of x/r, then the best advice presently available is toutilize right-
angle distances, as described below.

In the second model it isassumed thatthe instantaneous probability of
flushing is a function of the current distance betweebserver and anmal. It
seems quitereasonable tassume flushing probability toincrease steadily as
the observer approaches, being nearly zero at a long distance and
approaching unity inthe immediate neighborhood ofthe animal. One might
expect that ananimal registers avariety of auditory and visual cues from an
observer's approach, and that tlke&mulative effectof those cuesresults in an
increased probability of flushing. Such a model isconveniently labelled the
variable- distance model.

It does not sem likely that the two models can beistinguished on the
basis of field observations. Either will lead to a frequency distribution of
flushing distances, beingbased on gopulation distribution of flushing radii
in the fixed-distance model, and on realizations of ®bability model in the
variable-distance case. Details of the theory appear inEberhardt (1978a), and
lead to the conclusion that Eq. (5.4) should be used dioimals that flush. The
theory also shows thatlushing-distance (r) and flushing-angle @) should be
independently distribetd. Hence a usefufurther check ofconformity to the
flushing-distance model is to plot r ande to see if there isany suggestion of
association. Spearman'srank correlation coefficient might beused to test for
correlation between r and (see, for example, Snedecor and Cochran 1967).
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The fixed-distance model can heed to showthat there appears to be a
loss of efficiency (i.e., alarger variance results) if right-angle distances are
used when the flushing-distance model holds. Itshould be noted that the
current authoritative referencen “distance sampling” (Buckland etal. 1993)
has dropped the idea of using sighting distances. Thmawarked that “Hayne’s
(1949) method is poor ifd is not approximately 32°7and maynot perform well

even if O falls close to thisvalue, i.e., isnot arobust method.” Consequently
they use only right-angle distances.

Exanple 5.4 Errors of measurement in |line transects

VWherever possible, the relevant neasurenent for |line transect
estimation should be neasured directly and as accurately as possible.
However, it nmay at tines be necessary to calculate the appropriate

neasurenent by trigononetry on the pairs of the neasurenents of Fig.
5.5.  Anyone doing this should be aware that the effect of increnental
errors may vary considerably, depending on the particular pairs used.
Suppose 6 and x (Fig. 5.5) are nmeasured and r is calculated as r = x sin
6. Then we note that dr = x cos 6 dB, so that an increnental error (d6)
in measuring 6 results in a corresponding increnental error (dr) in the
estimate of r. The absolute relative error inr is:

dr _cos6
_rH sin 9 o
Cc0s6 Cc0s6
— 0 = " = =

when 8 5,Slne 11.43while for 8 = 450Slne 1,and for 6 =600,
c0s 6 .
sin 6 = 0.58.Consequently, errors at small angles can have rather serious
ef fects.

The above approach can be used to eval uate other arrangenents, and
a logical extension would be to explore the effects of errors on the
final estimate by incorporating the theoretical frequency distribution.

Doing so in detail calls for a know edge of likely increnmental errors
(dB) at various angles, but this has not been investigated yet, to ny
know edge. However, since the theoretical frequency distribution of
angles is proportional to cos 6 (Eberhardt 1978b), it is obvious that

errors at small angles ought to be avoi ded.

Too often, field data show evidence of gross errors. These appear
in histogram plots of angles and distances as a tendency for
measurenents to pile up at angle like 00, 300, 459 and 90° and for
di stances to be sinmlarly grouped. "Trial runs" or pilot surveys are
useful devices for catching such tendencies and training observers.

5.6 Right-angle distance line transects

When detection depends onthe observer, it is unlikely that the
flushing-distance (now sighting-distance) models can be expected to hold. The
major summary of field experience isthat of Robinette etal. (1974) and
suggests that thesemodels do not hold foranimals that do not flsh and for
some inanimate objects. One prospect that needs study is that themanner in
which dbservers scan ahead as theymove along the transect may well
influence the data. For theresent, the safestcourse incircumstances where
detection depends othe observer is toresort touse ofright-angle distances,
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and, as notedabove, only theuse ofright-angle distances isrecommended in
the recent literature (Buckland etal. 1993). This may wall require larger
samples because of aadded component of variability in usingright-angle
distances. Hence the need for research todetermine whether sighting-
distance models might be used, suitable precautionsare taken (in particular,
advance surveys should show that the mean sighting angle is very clo82.70
degrees). As noted above, only the use of right-angle distances is
recommended in the recent literature (Buckland et al. 1993).

Supposing that the conservative course is chosen,i.e., that the right-
angle distancesare to be usedthere then isthe question of how toestimate
density from such data.

A convenient frame of reference is that of Eberhardt (1968b). ayain
suppose thatthe study area igectangular inshape as inFig. 5.6 with a
baseline of length W. It imssumed thatvirtually all of the observations made
from a given transect line (represented by the solid line in Fig. 5.6) vathin
a distance Z on either side of theansect line, and thusvithin the shaded area
of Fig. 5.6. Hence if Zis smallrelative to W wecan neglect most boundary
problems. As suggestedbefore, one can adopt the convention that
observations mde outside the studwrea on twoboundaries will be included,
and those outside of the other twmoundaries will be neglected. Sdong as Zis
guite small relative to Wthis approach should serve todeal wth irregular
shaped areas. To simplify the presentation, we now "fold" lgfe-hand side of
the shaded area over onto theight-hand side and depict the actual
observations ofpositions of observedindividuals as inFig. 5.7. If we then
project these positions down onto abaseline, as shown blines in Fig 5.7, we
can analyze the data in terms of right-angle distances alone. The
mathematical results thenused (Eberhardt 1968b) arthose of Parzen (1972).
However, instead of arintensity function,” weuse a"visibility curve,” g(x),
as in Fig. 5.8. Theessential featuresare that theprobability of sighting an
animal directly onthe transect line shall beunity (g(o) =1.0), and that the
curve decrease smoothlyaway from the transect line. Further theoretical
details appear inBurnham and Anderson (1976) ,Eberhardt (1968, 1978b) and
in Buckland et al. (1993).
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Fig. 5.6. Restricted area (shaded) used in many right-angle line transect
methods.
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Fig. 5.7. Projection of observed positions on to a baseline.
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Fig. 5.8. A"visibility curve", g(x), showing truncation imposed byneglecting
observations beyond z.

The visibility curve of Fig. 5.8 is hen the underlying model that
generates the actual right-angle distances associated with a particular
transect, represented by projecting to the baseline of Fig. 5.7. The position of Z
in Figures 5.6 to 5.8 isarbitrary. Itneeds to be such thamnost, but not all, of
the actual observationdall to the left of Z,when the entire set of datafrom a
given study are considered. The actual selection of Z will be discussed below.

The visibility curve isnot itself afrequency distribution, but it can be
converted tosuch adistribution if it is divided by a constant that is the
integral of g(x), asshown by Burnham ad Anderson (1976) and Eberhardt
(1978b). Thus we have:

f(x) Q}ﬁﬁ (< x w) (5.5)

o)
where §= J g(x) dx

x=0

A simple example of aisibility curve isthe negative exponential as

used by Gates et al(1968) and Gates 1969). They found that it fitted data on
flushing of ruffed grouse (Bonasa umbellus) quite satisfactorily, and gave
estimating equations for both flushing-distance anight-angle distance data.
An objection tothis curve, however, isthat it drops off at aconstant rate. As
suggested byEberhardt (1968b), a more dgical curve would be onethat is
nearly flat near the transect line, dropping off sharply some distance from
the line, and hen "tailing off* more gradually. Such acurve accommodates
both the realistic assumtion that anarrow strip censusis feasible (i.e., that
nearly all animals will be seen on anarrow strip centered onthe transect
line) and the observational fact that afew animals are seen at some
considerable distances from the transect line. One curve fitting this
requirement isthe "reversed logstic" proposed by Eberhardt (1968) and
described in more detail by Eberhardt (1978b).
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The negative exponential curve has one pameter while the reversed
logistic has two. If one parameter of tHatter curve is very sdll, it becomes
virtually indistinguishable from the negative exponential. This property was
used by Eberhardt (1978b) toexplore the effect of small deviation from the
negative exponential onthe resulting density estimates. The simulations
conducted byEberhardt (1978b) vyielded biaseqoverestimates) of 1percent
and 50 percent if the true model were one of the tewersed logistics but the
negative exponential were assumed to be the appropmatdel. Consequently
we do not recommend assumption of the negative exponential model.

A variety of other models have been proposed ithe literature. The
half-normal (Henngway 1971) is aone-parameter model having the shape
suggested above asappropriate. Anderson etal. (1978) have proposed #&og-
linear model, while Pollack (1978) presents an exponential power seniedel.
Both of these "families” of models include the negative exponential and half-
normal and provide considerable flexibility. The immediate problem is éack
of published experiencecovering avariety of field data. We will thus not try
to make any specific recommendations about the use of particular frequency
distributions.

One of the several recent developments in frequency dstribution
models is the"Fourier Series" estimator o€rain etal. (1978). It provides a
highly flexible model tlat may beexpected togive very good fits to field data.
Both theoretical and simulatiostudies wereemployed byCrain etal. (1978) to
show that the method harelatively small bas andhigh efficiency. That work
has been followed upin detail, with several new models, and theresults
published in “Distance Sampling” by S. T.Buckland, D. R.Anderson, K. P.
Burnham, and J. L. Laake (1993).Computations are available inthe program
DISTANCE which is available on the worldwide web along with a
comprehensive manual and the full text of the book by Buckland et al.

Exanmpl e 5.5 Testing flushing-angles

A sinple test is available to check whether observed angles are in

conformity with the underlying theory. The test is actually based on
the distribution of sinB, and holds for either the fixed or variable
flushing- distance nodel (Eberhardt 1978b). It is, however, nost
readily derived for the fixed flushing distance nodel. From Fig. 5.5,
sin 8 = x/r. Consider a fixed flushing radius of r. G ven that the

animal is flushed (i.e., that the transect passes through a circle of
radius r about the animal), and that transects are randomy located, it
is evident that x will take on any distance between o and r with equal
probability. Hence the distribution of x/r is uniformover the interval
O0tol. A sinple test is then a chi-square test. Divide the interval
fromO to 1 into equal sub-intervals, with the nunber selected so that
the small est expected nunber is about 5, and tally the observations of
x/r by intervals. An exanple (from Eberhardt 1978b), appears in Table
5.3.

There are 84 observations, and 10 subintervals were used, so that
the expected nunber in each interval is 8.4. The chi-square test is
t hen:
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10 _ )
Chi - souare =y [ observed n:r:ber 8.4
1=1 .

It is worthwhile to tabul ate individual deviations and chi-square
calculations (as in Table 5.3), so that any aberrant observations can be
identified if the test shows statistical significance. |In the present
exanpl e, the chi-square value (10.73) is well below the 95 percent
significance |level (18.31) for 10 degrees of freedom Students shoul d
note that 10 degrees of freedom are used here, because the expected

val ue i s obtained i ndependently fromthe data.

Table 5.3 Chi-square test for uniformty of sin 6 data for a census of
t he side-blotched lizard.

Interval Nunber of Deviations from Chi-square
(simd@ = x/r) observations expected numbervalue

0.00-0.10 10 +1.6 0.30
0.10-0.20 7 -1.4 0.23
0.20-0.30 8 -0.4 0.02
0.30-0.40 15 +6.6 5.18
0.40-0.50 10 +1.6 0.30
0.50-0.60 10 +1.6 0.30
0.60-0.70 6 -2.4 0.68
0.70-0.80 4 -4.4 2.30
0.80-0.90 9 +0.6 0.04
0.90-1.00 5 -3.4 1.38
84 0.0 10.73

5.7 Density Estimation

The generally accepted estimator for right-angle line transect models is
(Seber 1982), Buckland et al. (1993):

A 1
B 6 (5.6)

where m isthe number of objectsobserved, and L ighe (total) length of
transect on whichthe m objects areobserved. The estimate othe reciprocal
of u is calculated from the observed distances.This is done by noting that, in
Eqg. (6.5), f (0) =1t . Thus the main objective ofthe various methods is to
obtain an esthnate ofthe frequency ofobservations "on" the transect line, or
f(0). Consequently, an equivalent form of Eqg. (5.6) is just:

g1 f0) (5.7)

Looking back to Eg. (5.4), it may bebserved the Hayne's (1949) estimator is of
this form, except that f(0) or theeciprocal ofuis estimated fromthe awrage
reciprocal of flushing distances, i.e.:
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2nL m 7 I 2nL Z
and that n transects, each of fixed length L, were used.

Since, as we have already remarked, the "state of the art" andhtéery
of line transect are now described indetail by Buckland etal. (1993), we will
not attempt to review all of the currently used methods. Saxamples appear
in Example 5.6 and |Irecommend consultingthe current literature for recent
improvements. Isuggest use of the "distribution-free” methods ofthe next
section as a check on any other method used.

Example 5.6 Density estimation for |line transects

Cal cul ations for two of the nethods will be illustrated on the set
of data in Table 5.4. These data cone from actual observations nmade in
a line transect study (Eberhardt 1978b) of the side-blotched lizard (Uta
stansburiana). An artificial grouping of the data into 8 transects has

been used here as a device to illustrate variance cal cul ati ons. Si nce
these data appear to conformto the theoretical nodel for aninmals that
flush, it may be possible to use Hayne's method, Eq. (5.4). It may be

remarked here that the "flush" exhibited by these aninmals is a dart for
cover, and that nearly all sightings result from this cue, as basking
animal s are not readily seen before they nove.

Using Eq. (5.4) gives the results of the summary table (Table

5.5). The equation is used with n =1 for individual transects, i.e.,:
1 1
—_m=
D2L| i=1fi

The individual transect results can be conbined with the ratio estimte
of Exanple 5.1:

n
N N n
Bverall= LiDj / z Li
i=1 i=

Vari ance cal cul ati ons proceed in the sane nanner as for line intercepts
(Example 5.1
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Table 5.4. Line transect data from a lizard study. Flushing (r) and
ri ght-angl e distances (x) for individual transects.
#1 #2 #3 #4 #5 #6
r X r X r X r X r X r X
46 46 91 51 137 29 60 43 51 23 91 16
82 26 42 25 21 17 67 34 42 14 74 58
59 10 36 32 84 25 51 18 109 57 57 10
42 36 126 88 62 25 68 37 120 43 101 40
40 35 43 15 79 37 55 13 60 32 74 72
100 96 80 0 55 3B 39 32 46 13
70 0 168 90 81 32 46 15
95 35 90 73 67 18 99 37
95 32 78 25 55 0 87 0
61 41 165 75 58 11
58 42 269 33
24 13 269 25
85 35
168 98
50 0
83 4
42 27
75 10
104 O
#7 #8
r X r X
153 48 85 79
112 45 112 55
126 34 94 0
61 45 78 15
53 43 158 68
78 0 153 72
53 17 153 74
59 49 42 27
78 64 42 27
150 146
128 34
114 38
90 54
93 24
To illustrate the use of right-angle distances, we use the half-
normal distribution. This requires the assunption that right-angle
di stances fromthe transect |ine have the relative frequency given by:
2 -x2
f(X) ‘\/Z‘[ exp\ZGZ )
This is just the famliar normal distribution, but with p = 0, i.e.,
centered on the transect line. Also, the distribution is nultiplied by
a factor of 2 in order to permt "folding-over" half of the

and thus considering observed distances ashough they all
[ine. Recalling that the general form

di stribution,
fell on one side of the transect
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of the density estinmator for line transects calls for an estinate of
f(0), we get:
2

U Ve o

The paranmeter (o) is estimated just as it is for the normnal
distribution, i.e.,:

2
m
0/ _(Z Xj )1/2
= S
= M
Wth the exception that the divisor is m rather than m1, since in this
case the nean is known (i.e., is zero). |Inserting the above expression
for f(0) in Eg. (5.7) gives:
/\. m

i B
LNZn i
The individual transect estinmates appear in Table 5.4, and are conbi ned
just as with Hayne's net hod above:

n
A A 0 0.822
Dverall = Z LiDj / Z Li =Tgg = 0-0016.
i=1 i=1
Table 5.5. Summary of |ine transect data for a lizard study.
N N
Transect Length Nunber of LiD j LiD j
number Lj observationgHayne) (half-normal)
1 30 5 0.050 0.061
2 50 6 0.052 0.040
3 60 12 0.109 0.169
4 80 9 0.066 0.076
5 100 19 0.129 0.197
6 80 10 0.074 0.113
7 60 14 0.083 0.100
8 40 9 0.056 0.066
500 84 0.619 0.822
Density estimates 0.00124 0.00165

5.8 A "distribution-free" method

The terms, "parametric models" and "non-parametric models" haeen
used in the literature to classify line transect methods. pMefer toavoid that
classification because the procedures thus far used mostly do nvolve
parameter estimation. Hence wpeefer tolabel the method preseted here as
"distribution-free," since it des notrequire the specification of aparticular
frequency distribution or "visibility curve.!” Burnham and Anderson (1976)
suggest some other approaches that do not depend on a specificfrequency
distribution.

The method presented here is owoeiginally devised byCox (1962, 1969)
and adopted forright-angle line transects by Eberhardt(1978b, 1979). A
physical analogy, "length-biased sampling” was described in Section 5.4, in
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reference toline-intercept methods. In that situation the physical size
(length) of an object determines the probability that it will be intercepted by a
randomly located transect line. However, a much larger class of situations
may be included if one considers wat Patil and Rao (1978) have described as
"weighted distributions.” They derive an quation ofthe form of Eq.(5.5) by
supposing that the true frequency distribution cannot be observeddirectly,
and that theobserved frequency distribution issomehow "weighted" in the
observation process.

In line transect wrk, the weighting function is what we havecalled a
visibility curve above (cf. Fig. 5.8). Given random locatn of transect lines,
the probability that an objectwill actually exist at aright-angle distance, x,
from the transect lines is given by a uniform distribution. That is,
theoretically, any distance isequally likely. However, the distances we
actually observe depend on the visibilityurve. Hence objectsdirectly on the
transect line are seen with certainty (g(0) 1=0), while those at aonsiderable
distances are seenvery infrequently. Hence, formally, Eq. (5.5) should be

written as:
) :% (5.8)

so that dx represents the uniform probability that an objectexists at any
distance x from the transect line, and g(x) is the "weighting function.”

The main value ofall of this is theoretical, inthat it lets usextend the
rather concretenotion of a line intercepting anobject to the moreabstract
notion of a visibility curve. Frher details andapplications toa wide range of
problems can be foundin Patil and Rao (1978) and in thereferences cited in
that paper.

Cox's method depends ontallying observed distances within fixed
intervals away from thetransect line. Thus all of the observations within a
distancep, on either side of the line are addeg and used to estimate theue
proportion of all observations, denotep(0,A), that fall in that interval. Hence
if there are Kk observations within the distanca, we estimate p(@) =ki1/m

Similar estimates are constructed for p(A,bA), the next pair ofparallel belts
(Fig. 5.9) and p(ln,da). Cox'soriginal method used only two intervals, but an
extension to three omore intervals isreadily obtained (Eberhardt1979).
However, it appears that the variance of the resulting density estimate
increags as the number of intervals idncreased (Ebdvardt 1979), so wewill
limit the present discussion to two intervals.

An estimator for two intervals is (Eberhardt 1979):
N

1, (b2 - 1)p0,4) - pAkA)
w( = b(b-1)n

(5.9)

where A is the width of the inner interval andAbis the width of the inner two

N N
intervals (Fig. 5.9). The quantities g0,A) and pA,bA) are estimated as
described above, i.e.,

n k1 A ko2
(P.0) “m and (A,bA) =m (5.10)
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where there are kobjects observed within the belts of the widthA on either
side of the transect line,2kare seen within the two intervals (right- and left-

hand sides of thetransect line, Fig. 5.9) demarcated byA and I, and m is the
total number of objects observed regardless of distance from the transect line.

1
| |
'\
da ba A 0 A ba da
k
2

Fig. 5.9. Intervals or "belts" used in Cox method.

Having estimatedthe reciprocal ofy, all one needs to do isnsert that
estimate in Eq. (5.6) to estimate density per unit area, where the unitshaee
in which right-angle distances (¥ and length of transect (L) are recorded.

Cox (1969) used b = 2, so th#te inner and outer intervals are equal (e., they
are both of widthA). Since mappears inthe numerator (Eq. 5.6) and in the
denominators of p(0,A) and p@,bpd), it effectively cancels out in the
calculations. Hence, if one combines Eqgs. (5.6), (5.9) and (5.10), the result is:

~n _(b+1)kg - ko
= 2Lba

(5.11)

where wehave used theresult that (b2 -1) =(b +1)(b -1). Oneapparent
consequence of this simplification is that m (the total number of objects) is not
required for density estimation. However, that quantity is essential in
studying variability of the estimates, and thus should berecorded, except in
special circumstances. One such situation may be in cases where
identification of objects beyond a distance oA bis uncertain. Calculations are
discussed in Example 5.7.

An interesting variant ofCox's method isthe case where only one
interval, of width A (on each side of the transect line), is used. This reduces Eq.
(5.11) to:

n k1
_Dﬂ (5.12)
We then have simply a striptransect, or"Kelker's method,” in which it is
assumed that all of the objectwe observed withina strip of width 2 . It may
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be noted that if the number of objects observed in the belts is equal,i.e., if
k1 = ko = k, then Eq. (5.11) becomes:

A (b+Dk -k _ Kk
2Lba  _ 2LA

=4

so that we again have a strip transect.

Another variant, of interest tornithologists, is Emlen's(1971) method.
It turns out (Eberlardt 1978b:15) that Emlen's methodessentially reduces to
use of Kelker's method, or a strip transect. Details appear in ExampleSimn8e
the assumption that all animals (or objects) are seen in theinner strip is an
important and uncertain item, we recommend that two intervals beused in
practice.

Variance estimationfor the Cox method is a subjectthat needs more
research, particularly research supported byfield data. The weak point in
present theoretical approaches ishat they assume that thenumber of
individuals observed (m) isPoisson-distributed, which essentially amounts to
assuming random distribution ofindividuals. Since this is notlikely to occur
in practice, the pesent variance estimates are likely to be too low, i.e.,
underestimates. For the Cox method with two intervals, a convenient
expression of the variance is obtained as (Eberhardt 1979):

(b+1)2k1+k2
[(b+1)k1-k2]2

[CV.(D)2 = (5.13)

where b, Kk, and k are as defined above, and C.C/.QDstands forthe coefficient

N
of variation of the density estimate. For practical purposes, ifC.V.(D) equals,
say 0.25, one can propose approximate confidencelimits on an estimate as
being the estimate _+ 50 prcent (i.e., we pund the usual 95 percentnormal
curve "Z-value" of 1.96 to 2.0).

An alternative procedure for variance estimation is toemploy the
"replicate sampling” idea, i.e., to break the total sample down into random
subsets, calculate a density stimate from each such subsetand obtain the
variance estimate from the resulting set of independent density estimates.

For planning purposes, a rough approximation (Eberhardt 1978b) is:
CV.(D) = (%) 1/2 (5.14)

Two examples on actual data Eberhardt 1979) suggest this equation
underestimates the results of EQq.5.13) by roughly 10 percent. Seber (1973)

and Eberhardt (1978b), using different approaches, suggest acomparable
result for flushing-distances (sighting-distances, radial distances) to be:

CV.(D) = (%) 1/2 (5.15)
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We thus have an indaion that the variance usingright-angle distances and
the Cox method may be much as twice that obtained for flushing distances.

Exanmpl e 5.7 The "Cox" nethod

The right-angle distances of Table 5.4 can be used to illustrate
the Cox nethod, as given by Eq. (5.11). The main problem lies in
selection of the two intervals A, and bA. My reconmendation (cf.

Eberhardt 1979) is to include about 80 to 90 percent of the observations
i nsi de bA. If we let b =2 and A= 35, then bA= 70. Although density
can be calculated directly from Eq. (5.11), in this case it would be
desirable to make the intermedi ate cal cul ation represented by Eq. (5.9),
for use in conparison with the results of Exanple 5.6 above. This is
because the transect | engths used in the exanple are artificial, so the
best conparison is to estimate (1/n) or f(0). Hence the entries under
suns of LiDj from Table 5.5, are best conpared with the estimte

obtained fromthe Cox nethod. Note, however, that these quantities need
to be doubled for conparison. Calculations with the Cox nethod can be
carried out transect by transect, and it is probably worth doing so on
Table 5.4 just to see how the estimates behave. Wth small sanples,
however, it is preferable to make a single estimate for the entire area
(i.e., combine all of the observations in Table 5.4).

Exanpl e 5.8 Enlen's nethod

A method due to Emen (1971) becane quite popular wth
ornithologists. It depends on a "coefficient of detectability" which is
determ ned by an intensive study on one area, and then used to adjust
counts in other areas. The basic approach is to use the observed data to
determ ne where visibility drops off. If we let this point be A, the
assunption is that all birds are seen between the transect line and A.
Suppose k1 birds are counted in this strip, and that we want to estinate

the nunber of birds expected to be found between the transect |ine and
sone outer boundary, R  The logical estimate is just (ki1/A)R Em en

di vides the total nunber of birds (k) seen between the transect |ine and
R by this projected nunmber and calls this the "coefficient of
detectability":

C.D. _Ka_

This clearly anpbunts to an estimate of the proportion seen of the birds
present between R and the transect line. Enlen then proceeded to divide
t he nunber seen (k*) on a new area by the coefficient of detectability,
and regarded this as a population estinmate for the new area:

A k*k 1R

kA
Actually Ris selected so that a fixed transect length (1 mle) gives N
AN

as the nunmber of birds per 100 acres. Hence N is really a density, and
we note that if units of feet are used 2RL = 100(43,560) = C, so we can

N
wite R= C2L and express N as:

A k* kl
i~ brg)
Since the quantity in brackets is just Kelker's estimate [Eq. (5.12)],
Em en's procedure turns out to have the follow ng steps:
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(1) Estimate density on one area by Kelker's nethod, while
counting all of the birds visible on 100 acres (k).

(2) Count all of the birds visible on 100 acres (k*) on a new
ar ea.

(3) Use the ratio k*/k to project the Kel ker estimate of the first
area to the second area.

Several limtations of the method seem apparent. One is that the
visibility curve is assunmed to have a particular form i.e., all birds
are seen out to sone particular distance. A second limtation is that
it is assumed that we can l|ocated that distance from observed data. A
third, and major problem is that it is assumed that the visibility
curve remains constant fromarea to area, and time to tinmne.

These several linmtations can be avoided sinmply by taking one
precaution. That is to record separately all birds seen between the
transect line and the distance A on the second area. One then can use
Eg. (5.11) with b = R A and get a direct estimte of density
i ndependently on the two areas.

5.9 Assumptions underlying line transect methods

A dedsion to use aparticular line transect method needs tdake into
account the underlying assmptions. The list given here isbased onseven
assumptions given by Gates et al. (1968) and Seber (1973,1982), but is
rearranged toshow just which assumptions are required for a given line
transect method. We assume thatandomly located transect lines are utilized,
and thus drop one restrictive assumption, that of random location of the
objects being censused, which isot required for randomly located transect
lines (Eberhardt 1978b).

The first three assumptions are basic andwhether ornot they are met
will depend onbehavior ofthe observer and of the animal being censused.
They are:

(1) No animal (or object) is counted more than once on a given transect line.
(2) When flushed, each animal isseen at the exacposition it occupied when
startled by the observer's approach. Obviously this des not apply toanimals
or objects that are fixed in place during the census.

(3) The responsebehavior ofthe population on acensus plot does notchange
during the course of running a given transect.

Definitions of the response behavior serve todistinguish the various
methods. One of these is achieved by defining a visibility curve as follows: The
probability that an amnhal, or object, being seen, given that it is at aright-
angle distancex from the transect line is a simple function, g(x), such that
g(0) = 1 (i.e., animals, or objects directly on the transect line abeerved with
certainty). These assumptions hen suffice for right-angle line transects.
Assumption (3) nowmeans that the visibility curve doesnot change during
the course of running a given transect line.
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A fourth assumption serves todefine conditions for the fixed flushing-
distance line transect. This assumption defines the response behavior of the
animals:

(4) Individual animals have fixed flushing radii, during the course of running
a given transect, and flush if, and only if, an observer comes within this
characteristic distance (r). It is of course, also necessary toassume that r is
accurately observed and recorded.

An alternative assumption, plus some dters, leads to the variable-
distance line transect:

(4a) The animals are homogenous with regard to their inhBrent response
behavior.

(5) The sighting of one animal is independent of the sighting of another.

(6) The instantaneous probability of flushing is aunction, f(r), of the radial
distance, r, between animal and observer.

These several assumptions lead to the theory of the variable distance
model (Eberhardt 1978b). It may beemarked that one could assume a
particular mathematical model for f(r) and proceed to derive efficient
estimates for density estimation under such amodel. This has been done in
some of the literature (e.g. Gates etal. (1968) ad Gates (1969)). We have
previously mentionedtwo tests that should be applied tobserved data before
the flushing-distance method and Eq. (5.4) isused (cf. Example 5.5). We will
return to discussionof some aspects ofthe above assumptions in @ubsequent
section on sampling design.

5.10 Strip transects

The simplest case of atrip transect occurs when the objects being
censused are readily visible and sufficiently abundant topermit using a
restriction on width of the strip covered. The method then amounts simply to a
sample survey using long, narrow plots. The methods of Chapter 4 hem be
applied. A basic assumption is that all of the objects on the plot are tallied.

When there is aeason to believethat not all of the objects on theplot
are seen, hen it may benecessary to introduce asibility-curve. Wehave
preferred totreat such situations under the heding of right-angle line
transects (as irFig. 5.1). However, this is mostly amatter ofpreference, and
one could chssify such situations as'strip transects using visibility- curves."”
This may be amore natwal-seeming descriptbn in circumstances where a
finite boundary exists on strip width. An example is the studyAwofderson and
Pospahala (1970), who counted duck nests on dikdte width ofthe dike then
provided a natural boundary on strip width. However, the methods of
estimation will remain essentially those treated here asright-angle line
transect, except that the total number of objects tallied (m) will be thasked
within the strip, and the visibility-curve, g(x), is truncated (cut-off) at the
strip boundary.
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An important issue in such situations isthat a vsibility-curve has to
enter the calculations ofdensity in some manner. Several publications have
used a procedure to correct foeduced visibility away from thetransect line.
This consists ofsumming the total observations from the entire survey for
various intervals out fromthe transect line. Wh the symbols used above, one
would thus have Kk observations inthe interval (oA), k2 in (A,bA) and so on.

It is then assumedthat all of the animals are seen in theinnermost interval,
and the fraction seen in theother intervals iscalculated from the observed
data, i.e., k/k1, k3/k1, etc. These rates are then used to adjust daily (or weekly,

etc.) observations inthe outer intervals, supposedly correcting them for the
fraction missed. However, this procedure simply resultsadjusting all of the
intervals to equal thecentral one(to ki observations), smne may as well use

only that interval and not bother wth the rest. The samekind of procedure
has also been used toadjust for numbers seen by time ofday when certain
observation periods give the highest counts.

While the Cox method (Sec. 5.8) does not require postulation sypecific
visibility-curve, it does take the existence ofsuch acurve into account in the
estimation procedure. All of the other methods actually used thus far do
specify a particular curve or "family" of curves.

Strip transects have been widely used in aerial surveys, largely of
terrestrial animals. It is nowwell-established that not all of the animals on
the strip are seen by theaerial observers. Caughley (1974) hassummarized
evidence on this point. Caughley et al. (1976) have conducted some
experiments designed to explorethe effects of strip width, altitude and speed
on the numbers of animals counted. They go further, and use multiple
regression equations toattempt tocorrect for these variables. However, | do
not recommend the use ofsuch equations, because a veryuncertain sort of
extrapolation is utilized--going from the observed data to zerostrip width,
speed, and altitude.

Two alternatives seem worth consideration. One is to utilize such
experiments to arrive at standard set of observation parameters, and to then
regard the observed data as anindex. When accurate counts by another
method are feasible, one can hen attempt to gofurther by "groundtruth”
correction. A variety of special precautions need to be taken in asrialveys,
and are described in a publication by Norton-Griffiths (1975).

As mentioned in Sec. 5.8,the Cox method might be applied taerial
surveys in the form of Eg. (5.11), ushg two strips. This approach is
particularly attractive inthat it will not ordinarily be possible to attempt to
record right-angle distances. About all thist likely to be feasible is torecord
observations inwo intervals, demarcated bymarkers onwindows and struts.
Since most such surveys are conducted by observers who look outwsitdgows
of small aircraft, a particular drawback to this amgement needs to benoted.
This is that the \vsibility-curve is not likely to be that of Fig. 5.8, with
certainty of observation ofanimals directly onthe transect line. This is
because the transect line is directly under thiecraft, and notreadily viewed
by the observer.

Unless aspecially fitted-out aircraft is available, with provision for a
"bow" observer tolook directly forward and down,the only alternative seems
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to be to attempt tolocate, by exprience, the right-angle distance that can be
viewed effectively and comfortably by observers. The obserers should then
concentrate on"'guarding” (covering) afairly narrow strip starting atthat
point. This strip then becomes thaterval (0A) and frequent glances up and
out areused totally animals inthe outer strip (A,bA ). The critical point is to
concentrate enough effort on one line which is considered to be 'th&hsect
line (normally there will be one such line oneither side ofthe aircraft). In
larger aircraft, it may bdeasible to assign two @lervers to aside. One does
nothing but scan the"track line," while the secondobserves the outer strip
(A,bA).

5.11 Modified strip transects

Three modifications of striptransects have beenmentioned above. One
includes corrections for decreasing visibility with distance from the transect
line, and we have elected tocover this situation under right-angle Iline
transects. Asecond is thecase where animals, largely marine mammals, are
visible only intermittently. The third has to do withnimals thatare in fairly
constant motion, as with some small birds.

One basis for dealing wth animals that submerge, andthus are not
always visible on a transect, assumes a consthwing time (u) and a costant
period on thesurface (s) between dives. This is notparticularly satisfactory,
since both quantities may vary, and needs modification. In shipboard counts of
ringed seals (Phoca hispida), McLaren (1961) assumed thatall surfaced seals
could be seen out to a fixed distance (r) from the vessel. This, too, is netrwa
reasonable assumption, as quite certainly therd be a decrease invisibility
with distance. It might, however, be acceptable this distance (r) is kept

reasonably short. If the average probability () that aseal within a strip of
width 2r will be counted can be estimatedheh the observed count (m) within
the strip can be translated to an estimate of density as:
N
—p—— (5.16)

2rL(p)

i.e., the number present is estimated as ndpd this is divided by the area of a
strip of length L.

McLaren (1961) gave the probability (Pp) of seeing anindividual seal,

given that it is in the strip, as:

t S

%—_'__u +m (5.17)
where tdenotes the duration of the period when a surfacedseal would be
visible to an observer. Thiyvaries according tothe right-angle distance from
the vessel,since theradius ofvisibility (r), shown in Fig. 5.10limits the time
an animal can be seen at a giveght-angle distance. Ifv denotes veloity of
the vessel, then (see Fig. 5.10):

ty___rsine

\" Vv
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Fig. 5.10. Dimensions used in shipboard surveys of marine mammals.aThew
denotes the ship's course along transect line, while the obserers scan the
semi-circular area of radius r.

McLaren assumedthat no point could be keptunder observation for as
long as u nnutes, that is, t <u. Given this restriction, Egq.(5.17) can be
obtained byconsidering the two successiveintervals representing aive (u)
and the succeeding ine on the surface (cf. Exercise 5.13.1). If we make the
usual assumption of random transect locations (and thugnidform probability
of a
seal being present at given right-angle distance), thenEquation 5.17 can be
"averaged" to obtain:

T T S

- :péfv(s+u) Ts+u (5.18)

This differs from MclLaren's (1961) result (see Eberhardt 1978b).

A similar approach has been employed forcensusing whales visually,
except that anarrower width of field forward of the vessel isscanned. Also,
much longer detection distances are postulatdde to the greater visibility of
"spouting” or "blowing" by the whales. Doi (1974eveloped an egxession for
the probability of detection. Healso assumed &aonstant diving time, sothat
the samequestion ofthe effect of avariable diving time arises inconnection
with his results. Animportant difference inthe two approaches isthat
McLaren assumes t <uj.e., that submerged seals may goundetected, even if
they are in the zone of maximum possible detection directly ahead of the
vessel. i, however, postulated aone within which the observation ime is
long enough that any whales wereseen with certainty. Doi also inroduced a
correction factor (K) for the prospect that olservers mayfail to see some
whales, even though they do surface and "blow." This factor is:

fp \s
K=1-
(ﬁl)
where 0p represents the visual angle of the observedy is the angle searched

(on either side of the vessel) and s is the number of observers. Buckland et al.
(1993) described another method for whales called “cue counting”.
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The second modification to be considered here tbat required todeal
with animals, such asmall birds, thatare in motion during the course of the
survey. Yapp (1955) proposed anapproach based on thekinetic theory of
gases. The matheratical aspects were latereviewed by Skellam (1958). The
two equations involved are:

n z

=B (5.19)

where D = density of the population, z mumber ofencounters per unit time, v
= average elocity of the animals relative tothe moving observer, and r =
range orradial distance within which an animal must approach the observer
to effect an encounter.

2am2+w? (5.20)

where u= average elocity of the organisms and~w=average elocity of the
observer.

An important assumption is that the behavior of the animals is not
influenced by the presence ofthe observer. Eqg.(5.19) is based on the
assumption that the area in which encounters tpkace is a circleor radius r.
This, then isthe same sort otroublesome assumptionencountered before in
this chapter. If we let z = m/T, where m is the number of animals observed

during the total time of the survey (T), and also assume = Q, then:

A m m
C T 2rL
2rwT

where L represents theotal distance traveled byhe observer. Wehus have
the usual equation for a simple strip transect. One can, of course, let

w =0, i.e.,, assume that theobserver sits still and baseresults onthe awrage
velocity of the organisms:
N

- (5.21)

2rur
This has someattractive features, inthat the radius (r) can probably be
determined Wh reasonable accuracyunder such circumstances, and a
motionless observer isless likely to influence behavior ofthe animals. A
drawback is inthe "representativeness" odfhe spot selected for observation.
No doubt random selection of several spetsuld help on this score. However,
if the radii vary, as theylikely will, then questions othe effect of density vs.
cover type may need to be considered.

An important problem with the above method is that ofmeasuring the

average elocity of the animals (u). Clearly this cannot bedone during the
survey, atleast not if theobserver isalso moving. However, if the observer
sits still he might then use a stop watch to time movementammals and thus
estimate their velocity.

Little use seems tohave been mde of Yapp's method, so that it is
difficult to provide an evaluation based on experience.
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5.12 Survey design

Although much of the discussion of lineransect methods is couched in
terms of results obtained on single transect line, practical use of themethod
will frequently require combining results from a number of separate lines
into asingle sampling unit. This will be especially true in terms ofvariance
calculations, since precautions need to betaken toavoid individual sampling
units on which no animals are observed. As wehave already indicated, we
believe variance estimates based ontheory should mainly be used for such
purposes as coparing methods ofestimation, appraising bias, and thelike.
Another important use is inobtaining approximations suitable for estimating
sample sizes in planning a survey, as in Egs. (5.14) and (5.15).

In the actual analysis of surveyresults, werecommend variances be
estimated directly from the survey estimates, asillustrated in the several
examples. Howeverthe investigator should not wait wntil the data areall in
hand before considering how this is to be done. The arrangements for
analysis of the data should instead be decided at the survey design stage.

Usually the survey will require a number afays for completion sothat
a worthwhile precaution is taarrange the sampling plan so that thetransects
run in the samesub-area are spread out over the total time interval during
which the survey is conducted. Thus "replication in time" is introduced into
the survey, and it may be useful, Bnalysis ofthe data, totry to evaluate any
trends in time. When this kind o&rrangement is fedslie, it will be important
to randomize the locations of successive lines falling in the santearea. |In
fact, this may well bethe best way to useandomized sampling, irthat the
separation in timewill usually eliminate the need forconcern about having
two transects fall close together. Wen large areasmust be dealt with, iwill
usually not be possible to use a scheme of this sort.

The above scheme maybe illustrated by reference toFig. 5.11,which
shows a study area divided into three subunits, denotedvestical lines in the
figure. Onerandomly located transect line (L1, L2, and L3) is shown in each

sub-area for each day on four successive days. Toobtain avariance estimate
on the basis of "interpenetrating," or "replicate” sampling, one simply
calculates as estiate of density for each day, and usesthat estimate in the
variance calculation. That is, density is estimated as

n
VAN
:%— z Dj (5.22)
i=1
and variance as

n
28)= =25) (0. B)?
i=1
(5.23)

AN
where in this case n = 4. Note that the variance given is that of a mean, i.e., s(D
) is usually described as the standard error.
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For larger areas,travel time will be rather too costly to permit use of
single transects ineach sub-area. Alternatives are to useseveral randomly
located lines in eachsub-area, or touse asystematic amngement \th a
randomly selected starting point. Supposethree lines in each unit are to be
used. Then each base line lengthjVis divided intothree segments ofength

W /3. A random location is selected in the first and the remaining witaced
out by the interval W;/3. It may benoted that thebaselines (W) of Fig. 5.11

are not of the samdength. This is because ofthe irregular shape of the
region--it is best to try to keep the areas of thebunits about equal.Differing
lengths of transectline can behandled as described iExample 5.1.Note that
the three systematically placed lines discussed abowhould be treated as one
transect line in the analysis.

Stratified random sampling (Chapter 4) may wll be desirable inline
transect work. Example 4.6 illustrates use of stratification with a strip
transect. Unfortunately stratified sampling has notbeen used much with line
transects, so wehave little experience tadraw on for planning. One prospect
is that the use ofvariable sampling intensity (by strata) will call for making
individual population estimates for eac$tratum. Obtaining separatevariance
estimates for each stratum may thus require fairly intenssaenpling ineach
stratum.

A very important feature of surveydesign is to reviewthe underlying
assumptions (Sec. 5.9), and to consider whetther proposed design is likely to
result in violation ofone or more of the asmptions. | have reeatedly
recommended random sampling, @s is the basis for the esent theory. A
practical alternative is a systematic sample witlrandom start. With animals
that are highly mobile, one has to avoid asampling pattern that placeslines
near enough together that individual animatight be seentwice on the same
systematically arranged sampling unit.

The various assumptions that have to do with response behavior
obviously require good knowledge ofthe species andsituation. Somespecies
behave in ways that make them doubtful candidates for line transect
censusing. Wen right-angle distances are used, the "behavior" of the
observer is of crucial importance. Some desigh arrangements can rkelpce
the effect of observer differences. For example, ifseveral obsemrs are used
in a single aircraft, for an aerial survey, they should rotatethrough the
viewing positions fairly often (in small aircraft this may bepracticable only
on landing). This practice helps "average out" observer and position effects.
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Fig. 5.11. Randomization of transect lines within sub-areas on successive
census days.




5.39

Since circumstances ofline transect surveys are quite variable, it is not
possible to review each situation wth regard to the assumptions. The
investigator needs tounderstand them, and to take precautions Vmerever
possible. Another example is that lines should not be run close to dhapks
in cover, topography, etc. One can, of coursemply not census onthe side of
a line that parallels such &reak. Sometimes it is possible tarrange that the
lines go atright-angles tosuch "discontinuities,” and this should help. A
similar reasoning dictates that transect lines shouatt run the "long way" of
an elongated study area. Methods to minimize errors of measurementd atred
recording are of course essential in survey design and planning.

A variety of recommendations concerning transect methods in
censusing marine mammals appears inEberhardt etal. (1979). Some ofthese
may be useful in other circumstances. Asoted earlier, much more detail on
recently developed methods appears in the book by Buckland et al. (1993).

5.13 Exercises

5.13.1 Calculate C¥p) from Table 5.2 using ratio estimation, and calculate a
standard error for p using the individual proportions. Show your calculations.

5.13.2 calculate the weighted average density from Table 5.2 using ratio
estimation, and its standard error. Show your calculations.

5.13.3 Carry out calculations for the Hayne and half-normal methods for the
lizard data of Table 5.4. Show calculations.

5.13.4 Do the calculations for Example 5.7.

5.13.5 Estimate the Di for Exercise 5.13.3 and tabulate these along with the Di
from Exercise 13.4. Compute coefficients of variation treating each transect as
an independent estimate. Compute correlations among the three sets of data.
Also compute the coefficient of variation for the Cox method given in Eq.
(5.13), combining the data from the several transects.

5.13.6 Components of variance

It was remarked in Sec. 5.5 that the fixed distance model could be used to
show that alarger variance results if right-angle distances are used for
estimation, rather than the flushing distancédne way to appreciate this is to
recall that the basis forestimation for the fixed distance model depends on
doubling the flushing-radius todetermine the probability of observing that
individual. Doing this with the right-angle distance introduces anadditional
component of variability due to the fact that the observed right- angle
distance (x) falls randomly between zero and the flushing-distance (r).
Students with some training in mathematical statistics may want to try
calculating coefficients oWariation for x and r, assuming x to beuniformly
distributed on (o,r) andhat r has someunderlying distribution, say m(r). One
can ten find the two C.V.'s in terms of the first 3 moments |iq,u2,u3) and

obtain a notion of the relative difference in efficiency.
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5.13.7 Deriving a sighting probability

Students should attempt talerive Eq.(5.17), assuming sand u are fixed
and that t < u. Nothing beyond elementary probability consideratins is
involved, but a diagram helps.

5.13.8 A seal census

McLaren gives data as follows. Ship's speed 0.12 nautical mileshperr,
visibility limit 0.32 mles, s = 1minute and u = 3 nnutes, and 43 sealswere
counted on agiven transect. He doesiot give the transect length. Students
should convert Eq. (5.16) toepresent numbenf seals(N) in the area sanned
by the observer and carry out the relevant calculations.



